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Abstract
The critical phase transition temperatures of the ferroelectric (FE) phase and
the ferromagnetic (FM) phase in epitaxial 1–3 type multiferroic thin films
were obtained based on the thermodynamic model. Analytic expressions of
the para–ferro transition temperatures were derived as functions of the
volume fraction of the FM phase by considering the effect of the coupled
elastic stresses arising from the FE/FM and the film/substrate interfaces.
Our results show that the critical temperatures are significantly affected by
the induced stresses and can be controlled by adjusting the volume fractions
of the different phases within the thin film.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Multiferroic materials with two or three coupled ferroelectric
(FE), antiferromagnetic/ferromagnetic (FM) and ferroelastic
properties are currently being intensively investigated because
of their potential applications in the emerging field of
spintronics, new data-storage media [1], multiple-state
memories and sensors [2]. However, materials with large
magneto-electric (ME) coupling rarely exist in nature because
transition-metal d electrons reduce the tendency for non-
centric ferroelectric distortion [2]. Over the past few
years, advances in nanoscale thin films and characterization
techniques have led to the development of excellent structures
with good performance, revealing rich and fascinating
phenomena.

The ME coupling effect, which uses magnetic fields to
control electric properties, and vice versa, is of fundamental
and technological interest and has led to the renaissance of
multiferroic materials. Recently, studies have focused on
Bi-based compounds, including those with Bi site substitutions
(e.g. BiMnO3 [3], BiFeO3 [4], Bi2FeCrO6 and BiCrO3 [5]),
rare earth (RE) manganites (REMnO3 [6] and REMn2O5

3 Author to whom any correspondence should be addressed. Also at: The State
Key Lab of Optoelectronic Materials and Technologies, School of Physics and
Engineering, Sun Yat-sen University, Guangzhou, People’s Republic of China.

[7]), and composite materials with two or three phases [8–
10], following the ideas of van Schtelen [11]. Large ME
coupling responses [12, 13] at room temperature have been
found, but a comprehensive understanding of the coupling
mechanism is lacking, especially for single phase multiferroic
materials.

It is widely believed that ME coupling arises from the
interaction of internal and external stresses in composite thin
films. The effects of strain are regarded to be significant or
even dominant [14] and relate to factors such as the lattice
parameters of each phase and the substrate, magnetostrictive
and electrostrictive properties and the volume fractions of each
part. Such factors must be well understood to develop materials
with large ME effects. Theoretical approaches, including
the Green’s function technique [15], and phenomenological
models using the Landau–Ginzburg–Devonshire theory [16]
have been used to describe FE and FM coupling. However, the
details of the effect of external/internal stress on the properties
of the 1–3 type (three-dimensional heteroepitaxy structure
[9, 17]) multiferroic thin films have not been investigated.
This paper presents the results of an investigation of the
effects of stress on the critical temperatures which govern
the time-dependent Ginzburg–Landau (TDGL) equations for
the evolutions of both the polarization and the magnetization.

0022-3727/07/061614+06$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1614
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Figure 1. Schematic of the calculation model. (a) Schematic
illustration of the free standing states of each part, (b) the state after
transmutation with lattices well matched, (c) heterostructure of the
1–3 type with the FM phase (in grey) imbedded in the FE phase
(in crimson) on a rigid substrate (in blue), and (d) the cross section
of one element, in which l is half of the element length. (Colour
online.)

2. Thermodynamic model and stability of the
stationary state

A 1–3 type BaTiO3–CoFe2O4 thin film grown on a SrTiO3

substrate was studied based on the experiments [9, 17]. The
model used is defined in figure 1. Two local coordinate
systems with x, y and z parallel to the [1 0 0], [0 1 0] and
[0 0 1] directions, respectively, in the crystals were chosen for
the FE and FM phases (figure 1(d)). It was assumed that
the magnetic component is perpendicular to the interface of
the film/substrate since the easy magnetic axis is along the
[0 0 1], and in the same direction as the FE polarization in
tetragonal BaTiO3. Since the properties of the material are
the same along the x and y axes, the order parameters can be
simplified to functions of x and z. The depolarization field
may be greater in a thin film but weaker in a cylinder. In this
work, the depolarization effect was ignored for simplicity. The
total free energy of the system with order parameters P for the
FE phase and M for the FM phase is [16, 18]

F = FE
l + FM

l + Felas + Fsurf , (1)

where FE
l and FM

l are the Landau type bulk free energies of
the FE and FM phases, respectively, Felas is the elastic energy
of the total body and Fsurf is the surface energy describing the
relaxation of the surface lattices and the relaxation or restriction
of the interfacial lattice. FE

l , FM
l and Fsurf can be expressed as

FE
l = (1 − f )

∫
v

[
AE

2
(T − T E

c0)P
2 +

BE

4
P 4 +

CE

6
P 6

+
DE

44

2

(
∂P

∂x

)2

+
DE

11

2

(
∂P

∂z

)]
dv, (2)

FM
l = f

∫
v

[
AM

2
(T − T M

c0 )M2 +
BM

4
M4

+
DM

44

2

(
∂M

∂x

)2

+
DM

11

2

(
∂M

∂z

)2]
dv, (3)

Fsurf = (1 − f )

∫
s

P 2

2δpz

ds + f

∫
s

M2

2δmz

ds

+
∫

si

(
P 2

2δpx

+
M2

2δmx

)
dx, (4)

where AE , BE , CE , DE
44, DE

11 and T E
c0 are the Landau type

expansion coefficients for the bulk free energy and the Curie
temperature, respectively, of the FE phase.

AM , BM , DM
44, DM

11 and T M
c0 are the Landau type expansion

coefficients for the bulk free energy and the Curie temperature,
respectively, of the FM phase. f is the volume fraction of the
FM phase. v and s are the volume and the surface area of the
element, respectively. si is the interface area of the two phases.
δpx

, δpz
and δmx

, δmz
are the extrapolation lengths along the x

and z axes for the FE and FM phases, respectively. While the
interface of the phases is in bilayer systems or superlattices
complex [19–21]. A simple boundary condition was used here.

For materials free from any other external forces and
surface constraints, there will be a self-equilibrated internal
stress created by the incompatibility of the eigenstrains [22].
These are spontaneous strains induced by the ferroelectric or
ferromagnetic transitions [23]:

εE
ij = QE

ijklPkPl, εM
ii = 3

2λ100
(
m2

i − 1
3

)
,

εM
ij = 3

2λ111mimj (i �= j, m = M/Ms),

where Q is the electrostrictive coefficient tensor, λ1 0 0 and λ111

are the magnetostrictive coefficients and Ms is the saturation
magnetization of the bulk FM material. A 3 × 3 diagonal
matrix with all elements of 3

2λ100 is denoted as λ for such a
system. Because of the small values of the magnetostrictive
coefficients, the corresponding eigenstrains for the FM phase
are usually about two or three orders of magnitude less than
the electrostrictive strains, except for some alloys for which
the average λ̄ can be about 2000 × 10−6. Since the magnetic
material will extend or shrink along the direction of the
magnetic polarization, depending on the value ofλ, the external
strain/stress will inhibit or promote the phase transitions. It
is very important to predict the conditions appropriate for
the design of multiferroic composite materials with large ME
coupling.

In our system, the elastic energy can be expressed as

Felas = FE
elas + FM

elas,

FE
elas = (1 − f )

∫
v

f E
elasdv, FM

elas = f

∫
v

f M
elas dv,

(5)

where

f E
elas = 1

2CE
ijkle

p

kle
p

ij = 1
2CE

ijkl(ε
p

kl − εE
kl)(ε

p

ij − εE
ij )

and

f M
elas = 1

2CM
ijkle

m
kle

m
ij = 1

2CM
ijkl(ε

m
kl − εM

kl )(ε
m
ij − εM

ij )

and are the elastic energy densities with the corresponding
elastic strains e

p

kl and em
kl of the FE and FM parts, respectively.

CE
ijkl and CM

ijkl are the corresponding elastic moduli. ε
p

kl and εm
kl

denote the total strains. εE
kl and εM

kl are the eigenstrains of the
FE and the FM transformations, respectively. It is assumed
that the film was grown epitaxially from a rigid substrate and
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the lattices matched well. The average strain induced by the
substrate as a function of volume fraction can be written as

ε
p

11 = ε
p

22 = εm
11 = εm

22 = ε0
11 =

(√
f

am

+
1 − √

f

ap

)
as − 1,

where ap, 2am and as are the lattice parameters of the FE, FM
and substrate crystals, respectively. Ignoring the distortion in
the plane, we can derive ε

p

12 = ε
p

21 = εm
12 = εm

21 = 0. The other
strains ε

p

i3 and εm
i3 are derived from the mechanical equilibrium

equations for the whole sample body which are the surface
free condition (1 − f )σE

33 + f σM
33 = 0 and the displacement

consistent condition. The solutions for the FE phase and the
FM phase are

ε
p

33 = −1

C11E

(2C0
12ε

0
11 − qE

11P
2 − fm)

and

εm
33 = −1

C11M

(2C0
12ε

0
11 − qM

11M
2/M2

s − fp)

respectively, where

C0
12 = (1 − f )CE

12 + f CM
12 ,

C11E = (1 − f )CE
11 + f CM

11
Cp

Cm

,

C11M = f CM
11 + (1 − f )CE

11
Cm

Cp

,

qE
11 = (1 − f )(2CE

12Q12 + CE
11Q11) + f CM

11
Cp

Cm

Q11,

qM
11 = f (2CM

12λ12 + CM
11λ11) + (1 − f )CE

11
Cm

Cp

λ11,

fm = f

[
2CM

12λ12(m
2 − 1/3) + CM

11
Cm − Cp

Cm

]
,

fp = (1 − f )(2CE
12Q12P

2 − CE
11

Cm − Cp

Cp

],

fm is the contribution of the polarization to the magnetization
and fp is the contribution of the magnetization to the
polarization. Substituting the above results in equation (5),
the elastic energy density functions can be derived.

The temporal evolution of the polarization and the
magnetization fields can be described by the TDGL equations
[24]:

∂p(x, z, t)

∂t
= −LE ∂F

∂P (x, z, t)
= −LE(1 − f )

×
[
AE(T − T E

c0)P + BEP 3 + CEP 5

− DE
44

∂2P

∂x2
− DE

11
∂2P

∂z2
+ ∂f E

elas/∂P

]
, (6)

∂M(x, z, t)

∂t
= −LM ∂F

∂M(x, z, t)

= −LMf

[
AM(T − T M

c0 )M + BMM3 − DM
44

∂2M

∂x2

−DM
11

∂2M

∂z2
+ ∂f M

elas/∂M

]
, (7)

whereLE andLM are kinetic coefficients related to the domain-
wall mobilities, and AM = 1/(2χT M

c0 ) and BM = 1/(2χ) [25].
The variations on the elastic energy (equation (5)) with

respect to the polarization and the magnetization can be derived
as the following:

∂f E
elas/∂P = −2P [(qc11 − 2qc33C120/C11E)ε0

11

− (qcq − qc33/C11E)P 2 − fmqc33/C11E], (8)

∂f M
elas/∂M = −2m/Msλ11[(CM

12 − CM
11C120/C11M)2ε0

11

− CM
11(λ11 − qM

11/C11M)(m2 − 1

3
) − fpCM

11/C11M ], (9)

where

qc11 = 2Q12(C
E
11 + CE

12) + 2Q11C
E
12),

qc33 = 2Q12C
E
12 + Q11C

E
11,

qcq = Q12[2Q12(C
E
11 + CE

12) + 2Q11C
E
12]

+ Q11(2Q12C
E
12 + Q11C

E
11).

The surface items yield the boundary conditions as

∂P

∂z
= ± P

δpz

for z = ±h

2
,

∂P

δx
= − P

∂px

for x = lp,

∂P

∂n
= 0, for x = 0,

∂M

∂z
= ± M

δmz

for z = ±h

2
,

∂M

δx
= − M

∂px

for x = lm,

∂M

∂n
= 0, for x = 0,

(10)

where lp = (1−√
f )l and lm = (1−√

f )l with the considering
element length of the sample as shown in figure 1(d). h is the
thickness of the film.

According to linear analysis theory, the dynamic stabilities
of the stationary states can be probed by applying infinitesimal
perturbations �p and �m to the trivial stationary solutions
P0 = 0 and M0 = 0. Neglecting the small higher order terms
and retaining only the terms linear in �p and �m, equations (6)
and (7) become

∂�p

∂t
= −LE(1 − f )

(
AE′

�p − DE
11

∂2�p

∂z2
− DE

44
∂2�p

∂x2

)
,

(11)

∂�m

∂t
= −LMf (AM ′

�m − DM
11

∂2�m

∂z2
− DM

44
∂2�m

∂x2
), (12)

where

AE′ = AE(T − T E
c0) − 2

×[(qc11 − 2qc33C120/C11E)ε0
11 − fmqc33/C11E],

AM ′ = AM(T − T M
c0 ) − 2/Msλ11[(CM

12 − CM
11C120/C11M)2ε0

11

− CM
11fp/C11M + 1

3CM
11(λ11 − qM

11/C11M)].

In the same way, the boundary conditions (equations (10))
can be derived only with P and M replaced by �p and �m,
respectively.
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3. Stability analyses of the paraelectric/magnetic
states and the critical characteristics

When the sample was cooled below the critical temperatures,
a phase transition occurred. The critical conditions can
be studied through a bifurcation analysis of the nonlinear
equations. As the critical temperatures for the FE phase
and the FM phase transitions may be different, a different
sequence of transitions will occur. The parameters δpx

, δpz
,

δmx
and δmz

give different types of surface effects. For
simplicity, we consider the more common case δ > 0, and a
comprehensive discussion was given by Wang and Woo [26].
By separating variables and applying the boundary conditions,
the solutions for equations (11) and (12) can be separated into
time-dependent and time-independent parts connected by the
eigenvalues:

�p(x, z, t) = eωptϕωp
(x, z) = �E

0 eωpt cos(kpxx) cos(kpzz),

(13)

�m(x, z, t) = eωmtϕωm
(x, z) = �M

0 eωmt cos(kmxx) cos(kmzz),

(14)

where ωp, ωm are the eigenvalues and ϕωp
, ϕωm

are the
corresponding eigenfunctions. According to the stability
analysis, the critical conditions are ωp = 0 and ωm = 0
for the FE phase and the FM phase, respectively. Thus, the
supercooling temperatures are

T E
c = T E

c0 − 1

AE
(DE

11k
2
pz + DE

44k
2
px)

+
2

AE

[
(qc11 − 2qc33C120/C11E)ε0

11 − fmqc33/C11E

]
,

(15)

T M
c = T M

c0 − 1

AM
(DM

11k
2
mz + DM

44k
2
mx)

+
2

AMM2
s

λ11

[
(CM

12 − CM
11C120/C11M)2ε0

11

− CM
11fp/C11M +

1

3
CM

11(λ11 − qM
11/C11M)

]
. (16)

Substituting equations (13) and (14) in the boundary
conditions, yields

tan

(
kpzh

2

)
= 1

kpzδpz

, tan(kpxlp) = 1

kpxδpx

,

tan

(
kmzh

2

)
= 1

kmzδmz

, tan(kmzlm) = 1

kmxδmx

,

from which the smallest values of kpz, kpx , kmz, kmx can be
found. By substituting the results in equations (15) and (16),
we obtain the critical temperatures for the phase transitions.
The explicit expressions show that the volume fraction and the
elastic stresses as well as the length of the element can greatly
affect the critical temperatures.

4. Results and discussions

In this section, we take the BaTiO3–CoFe2O4 system [9] as an
example. The material constants (in SI units) are [14, 27]:

CE
11 = CE

22 = CE
33 = 1.66 × 1011,

0 0.2 0.4 0.6 0.8 1

500

1000

1500

2000

Volume fraction of FM part 

T

f
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(K

)
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l=60
l=80
l=100
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Volume fraction of FM part
T

f
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(a)

(b)

Figure 2. Critical phase transition temperatures versus the volume
fraction of the FM phase under different element lengths: (a) critical
temperature for the FE transition and (b) critical temperature for the
FM transition.

CE
12 = CE

13 = CE
23 = 0.77 × 1011,

Q11 = Q22 = Q33 = 0.11,

Q12 = Q13 = Q23 = −0.043, AE = 3.3 × 105,

DE
11 = 2.7 × 10−9, DE

44 = 0.45 × 10−9,

T E
c0 = 383.15; ap = 3.99, cp = 4.04, am = 8.38/2,

cm = 8.31/2, as = 3.905,

CM
11 = CM

22 = CM
33 = 2.86 × 1011,

CM
12 = CM

13 = CM
23 = 1.73 × 1011,

λ100 = −470 × 10−6,

Ms = 4.66 × 103, χ = 4.7 × 103, T M
c0 = 793

DM
11 = 7.2 × 10−17, DM

44 = 3.6 × 10−17.

Because of the limitations of the experimental data, DM
11 and

DM
44 are given with considerable values, but the approximation

should be sufficient for our discussion. The values for the
extrapolation lengths are usually about 5–45 nm for BaTiO3;
here, 45 nm is used for both the phases. The thickness of the
film is set to be 200 nm and the element length l is set to be
adjustable to probe the length effect.

In fact, the dislocations also have a great effect on the thin
film [28] and here we just give a cut of the stress values induced
by the lattice mismatch, namely ε0

11 (= ε0
22) is multiplied by a

factor of 0.1 to be closer to the experiment. Figure 2 shows the
critical temperatures versus the volume fraction under different
element lengths l. Obviously, by considering Tcp and Tcm to be
valid (above 0 K), there are minimal sizes corresponding to the
different volume fractions. The rapid decreases in Tcp and Tcm

are regarded as the size effects, which are common phenomena
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Figure 3. Critical magnetic phase transition temperatures versus the
volume fraction of the FM phase under different magnetostrictive
values λ(×10−6) (l = 100 nm).

in the FE and the FM materials. As shown in figure 2(a), within
the valid value, the critical transition temperature for the FE
phase shows a notable increase with a maximum value about
4 times higher than that of the bulk and the corresponding
value of f is more than 0.5 increasing towards longer l. It
is properly due to the larger lattice mismatch with a bigger
volume fraction of CoFe2O4 whose lattice parameters deviate
more from those of the substrate. The case in the FM phase
(figure 2(b)) is rather different. Except for the sharp rise for
the small value of f due to the size effect, a slight decrease
is manifested with the increase in f . Because of the small
value of the magnetostrictive coefficients, the contribution of
the stress is small to Tcm, as illustrated in equation (16). In fact,
there are two cases of the stress effect on the two phases. One
is that the compressive stress arising from the lattice mismatch
of the substrate and the thin film is big enough to make both
of the phases elongating along the z axis, which redounds
to the FE phase transition while hampering the FM phase
transition because of the negative value of the magnetostrictive
coefficient; the other is that the substrate compression is proper
to make the lattice of the FM phase depresses along the z axis
while extends in the FE phase. Such a balance favours a
transition in both the FE and the FM phases and results in
lower critical temperatures. The situation will be different in
a system with a positive magnetostrictive material or different
directions of easy axes, adding complexities to the design of
two-phase multiferroic materials with a large ME effect. To
probe more details about the effect of the λ value, we studied
Tcp and Tcm versus the volume fraction f under different
values of λ. The results shown in figure 3 reveal that Tcm

is higher with the negative values than the positive ones and
reaches a maximum when f is about 0.3. Because of the small
magnetostrictive value, the effect of magnetostrictive stress
on Tcp is insignificant. In particular, the FM phase transition
temperature also changes significantly with the value of P as
given in figure 4, while the value of M does not affect the FE
transition temperature.

5. Summary and conclusions

By using a bifurcation analysis, a thermodynamic model for
investigating the critical temperatures of the FE and the FM
transitions for the epitaxial 1–3 type multiferroic thin films are

0 0.2 0.4 0.6 0.8 1
700

900

1100

1300

Volume fraction of FM part

T

f

(K
)

cm

P =0
P =0.2
P =0.4
P =0.6

0

0

0

0

Figure 4. Critical magnetic phase transition temperatures versus the
volume fraction of the FM phase under different polarization values
(l = 100 nm, P0 is in C m−2).

established. Our results show that the properties of the phase
transitions are greatly affected by the induced stresses and can
be controlled by adjusting the volume fraction of the FM phase
within the film. The critical temperature of the phase transition
in the FM phase changes significantly with the characters of
the FE phase, but was not the same with the FE phase because
of the small magnetostrictive value. Analytic expressions also
show that the misfit stresses induced by the lattice mismatch
are crucial in determining the transition temperatures of the
multiferroic materials.
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